Prof. Dr. Peter Koepke, Ana Njegomir Problem sheet 4

Problem 1 (6 points). Let κ be a cardinal such that $\kappa = \kappa^{\omega}$. We say that $FA_{\kappa}(\aleph_1\text{-closed})$ holds if and only if $FA_{\kappa}(\mathbb{Q})$ holds for every forcing notion \mathbb{Q} that is $\aleph_1\text{-closed}$. Prove that $FA_{\kappa}(\aleph_1\text{-closed})$ is equivalent to $FA_{\kappa}(\aleph_1\text{-closed})$ restricted to partial orders of cardinality $\leq \kappa$.

Problem 2 (6 points). Let \mathbb{P} and \mathbb{Q} be forcing notions. Prove that the following statements are equivalent:

(1) $\mathbb{P} \times \mathbb{Q}$ is ccc.

(2) \mathbb{P} is ccc and $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}}^{M} ``\check{\mathbb{Q}}$ is ccc".

(3) \mathbb{Q} is ccc and $\mathbb{1}_{\mathbb{Q}} \Vdash^{M}_{\mathbb{Q}}$ " $\check{\mathbb{P}}$ is ccc".

Hint: For "(1) \rightarrow (2)" assume $p \Vdash_{\mathbb{P}}^{M}$ " $\dot{f} : \check{\omega}_1 \rightarrow \check{\mathbb{Q}}$ enumerates an antichain" and choose a suitable antichain in \mathbb{P} below p. For the converse, consider the \mathbb{P} -name $\sigma = \{\langle \check{\xi}, p_{\xi} \rangle \mid \xi < \omega_1\}$ and show that whenever G is M-generic for \mathbb{P} , σ^G is countable.

Problem 3 (4 points). Let \mathbb{P} and \mathbb{Q} be forcing notions. Prove from MA_{ω_1} that $\mathbb{P} \times \mathbb{Q}$ is ccc if and only if \mathbb{P} and \mathbb{Q} are ccc.

Definition. We say that the Diamond principle \diamondsuit holds if there exists a sequence of sets $\langle S_{\alpha} \mid \alpha < \omega_1 \rangle$ with $S_{\alpha} \subset \alpha$, such that for every $X \subset \omega_1$, the set $\{\alpha < \omega_1 \mid X \cap \alpha = S_{\alpha}\}$ is a stationary subset of ω_1 .

Problem 4 (6 points). Suppose that CH holds in a ground model M. Let $\mathbb{P} = \{ \langle S_{\alpha} \mid \alpha < \delta \rangle \mid S_{\alpha} \subseteq \alpha, \delta < \omega_1 \} \in M$ be a forcing notion ordered by reverse inclusion and let G be a \mathbb{P} -generic filter over M. Prove that the Diamond principle \Diamond holds in M[G].

Please hand in your solutions on Monday, November 6 before the lecture.